

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Special Issue 1, March 2017

Copyright @ IJIRCCE www.ijircce.com 26

Authenticated Communication between
Client and Storage Devices

[1]S.Dhanalakshmi, [2]A.Marisbala, [3]M.Subalakshmi, [4]R.Kalaivani

[1] [2] [3]UG Student, P S R Rengasamy College of Engineering for Women, Sivakasi, India
[4] Assistant Professor, P S R Rengasamy College of Engineering for Women, Sivakasi, India

ABSTRACT: In a parallel network file system, direct communication is established between client and the server as
well as the storage devices by using parallel session keys. Key establishment and key agreement are the problems in
secure communication. There are various authentication protocols are established to overcome these problems. One of
the protocols to overcome these issues is PAKE which incorporates online and offline password guessing, concurrent
sessions, forward secrecy, server compromise, and loss of session keys. Our review of the existing three authenticated
key exchange protocols has a number of limitations: (I) Due to the increase in size of a network the workload of a
server the performance of the server will degrade, (ii) forward secrecy is not achieved because of the size of the
network and (iii) it leads to key escrow. So we propose authenticated key exchange protocol to overcome the above
issues.

KEYWORDS: Authenticated key exchange, forward secrecy, parallel session, key escrow, network file system.

I. INTRODUCTION

 Network Security is a branch of computer science that consists of policies and practices that involves in
securing a computer network and to prevent, data theft, unauthorized access, network misuse and data modification.
Network Security is in preventing DOS (Denial Of Service) attacks and assuring continuous service for licit network
users. Denial of service is polished by flooding the targeted machine or resource with surplus requests to overload
systems and prevent some or all legal requests from being fulfilled. Network Security involves mechanisms and
protocol to protect data and network devices from internal and external threats. Parallel network file system is the
extended version of network file system. It is used to store application data persistently. Usually large datasets that
cannot fit into the memory. It provides global shared namespace (files, directories). It is designed for concurrent access
by multiple clients. It is used to increase the performance and also operate over high speed networks such as IB,
Myrinet, Portals. It increases the I/O bandwidth by allowing concurrent access. Some of the examples of high
performance parallel network file system that are in production use are the Google File System (GoogleFS), IBM
General parallel file system (GPFS), Parallel Virtual File System (PVFS), Lustre, Panasas Due to the emergence of
clouds, Map Reduce programming model, clusters and high performance computing Hadoop Distributed File System
were developed. Some important users of HDFS are Apple, AOL, eBay, Facebook, IBM, Hewlett-Packard, Twitter,
LinkedIn and Yahoo.

In this work, we investigate the problems in parallel network file system using Kerberos based protocol to establish the
parallel session keys between clients and storage devices. We consider a communication model that consists of large
number clients accessing multiple remote and distributed storage devices in parallel. We focus on how to exchange key
and to establish parallel sessions between the clients and the storage devices in the parallel Network File System
(PNFS). The development of PNFS is driven by Panasas, Netapp, IBM, Sun, EMC and Umich/CITI, and thus it shares
many common features of network file system.

http://www.ijircce.com
http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Special Issue 1, March 2017

Copyright @ IJIRCCE www.ijircce.com 27

Our primary goal in this work is to design secure authenticated key exchange protocols and to meet specific
requirements of PNFS. Especially, we attempt to meet the following properties of PNFS:
* Scalability- Scalability is the capability of a system, process or network to handle a growing amount of work, or its
potential to be enlarged in order to accommodate that growth. To achieve scalability bottleneck problem should be
avoided.
* Forward Secrecy- it generates one random secret key per session to complete a key agreement. forward secrecy only
protects keys, not the ciphers themselves.
*Escrow free- Key escrow systems provide a backup for cryptographic keys. Escrow systems are somewhat risky
because a third party is involved.
 Our Protocols are designed to achieve the above properties and keeping the computational overhead at
the clients and the storage devices at a reasonably low level. Our protocols can reduce the workload of the metadata
server by facilitating access request from client to multiple storage devices. In the next section, we provide some basics
of Parallel Network File System and describe its existing security mechanisms associated with secure communication
between clients and distributed storage devices. we identify the limitations of the current Kerberos-based
protocol in PNFS for organizing secure sessions in parallel. In Section III, we describe the drawbacks of
already existing Kerberos-based protocol in PNFS. In Section IV, we describe our protocols that aim to address the
current limitations of existing system. We then provide security analyses of our
protocols under an suitable security model, as well as performance evaluation in Sections VI and VII, respectively.
In Section VIII, we describe related work, and finally in Section IX, we conclude and discuss some future work.

II. INTERNET STANDARD – NETWORK FILE SYSTEM

 An Internet Standard is a specification of a technology or methodology relevant to the Internet. Internet
Standards are created and published by the Internet Engineering Task Force (IETF). The Network File System is a
client-server application that grant a computer user view and deliberately store and update files on a remote computer.
The NFS protocol is one of several distributed file system standards for Network-Attached Storage (NAS). Some of the
most notable benefits of NFS are:

 Local workstations use limited disk space because commonly used data can be stored on a single machine
and still persistent access to others over the network.

 There is no need for users to have independent home directories on every network machine. Home
directories could be set up on the NFS server and made possible throughout the network.

 Storage devices such as CDROM drives, floppy disks and USB Thumb drives can be used by other
machines on the network. This may reduce the number of portable media drives throughout the network.

A. SECURITY CONSIDERATION:
 Earlier versions of Network File System focused on simplicity and efficiency, and designed to work well on
local net-works and intranets. The later versions aim to improve access and performance within the Internet
environment. Among many other security issues, server and user authentication within an open, distributed, and cross-
domain environment are a complicated matter. Key management can be tedious and expensive, but an important aspect
in ensuring security of the system. Moreover, data privacy may be critical in high-performance and parallel
applications, for example, those associated with biomedical information sharing financial data processing & analysis
and drug simulation & discovery. Hence, distributed storage devices pose greater risks to various security threats, such
as illegal modification or stealing of data residing on the storage devices as well as interception of data to transmit
between nodes within the system.
The RPCSEC GSS framework is currently the core security component of NFS that provides basic security services.
RPCSEC GSS allows RPC protocols to access the Generic Security Services Application Programming Interface (GSS-
API) [33]. The latter is used to facilitate exchange of credentials between a local and a remote communicating parties,
for example between a client and a server, in order to establish a security context. The GSS-API achieves these through
an interface and a set of generic functions that are independent of the underlying security mechanisms and

http://www.ijircce.com
http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Special Issue 1, March 2017

Copyright @ IJIRCCE www.ijircce.com 28

communication protocols employed by the communicating parties. Hence, with RPCSEC GSS, various security
mechanisms or protocols can be employed to provide services such as, encrypting NFS traffic and performing integrity
check on the entire body of an NFSv4 call.

B. KERBEROS & LIPKEY
 In NFSv4, the Kerberos version and the Low Infrastructure Public Key (LIPKEY) GSS-API mecha-nisms are
recommended, although other mechanisms may also be specified and used. Kerberos is used particularly for user
authentication and single sign-on, while LIPKEY provides an TLS/SSL-like model through the GSS-API, particularly
for server authentication in the Internet environment.

C. CURRENT LIMITATIONS:

 The current design of NFS/pNFS focuses on interoperability, instead of efficiency and scalability, of various
mechanismsto provide basic security. Moreover, key establishment between a client and multiple storage devices in
pNFS are based on those for NFS, that is, they are not designed specifically for parallel communications. Hence, the
metadata server is not only responsible for processing access requests to storage devices (by granting valid layouts to
authenticated and authorized clients), but also required to generate all the corresponding session keys that the client
needs to communicate securely with the storage devices to which it has been granted access. Consequently, the
metadata server may become a performance bottleneck for the file system. Moreover, such protocol design leads to key
escrow. Hence, in principle, the server can learn all information transmitted between a client and a storage device. This,
in turn, makes the server an attractive target for attackers.

 Another drawback of the current approach is that past session keys can be exposed if a storage device’s long-term
key shared with the metadata server is compromised. We believe that this is a realistic threat since a large-scale file
system may have thousands of geographically distributed storage devices. It may not be feasible to provide strong
physical security and network protection for all the storage devices.

III. OVERVIEW OF OUR PROTOCOL

 We let M denote a metadata server, C denote a client, and S denote a storage device. Let entity X; Y 2 fM; C; Sg,
wethen use IDX to denote a unique identity of X, and KX to denote X’s secret (symmetric) key; while KXY denotes a
secret key shared between X and Y , and sk denotes a session key.

http://www.ijircce.com
http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Special Issue 1, March 2017

Copyright @ IJIRCCE www.ijircce.com 29

 Moreover, we let E(K; m) be a standard (encryption only) symmetric key encryption function and let E(K; m) be
an authenticated symmetric key encryption function, where both functions take as input a key K and a message m.
Finally, we use t to represent a current time and to denote a layout. We may introduce other notation as required.

We describe our design goals and give some intuition of a variety of pNFS authenticated key exchange6 (pNFS-
AKE) protocols that we consider in this work. In these protocols, we focus on parallel session key establishment
between a client and n different storage devices through a metadata server. Nevertheless, they can be extended
straightforwardly to the multi-user setting, i.e., many-to-many communications between clients and storage devices.

pNFS-AKE-I:Our first protocol can be regarded as a modified version of Kerberos that allows the client to generate its
own session keys. That is, the key material used to derive a session key is pre-computed by the client for each v and
forwarded to the corresponding storage device in the form of an authentication token at time t (within v). As with
Kerberos, symmetric key encryption is used to protect the confidentiality of secret information used in the protocol.
However, the protocol does not provide any forward secrecy. For each validity period v, C must first pre-compute a set
of key materials KCS1; : : : ; KCSN before it can access any of the N storage device Si(for1 i N). The key materials
aretransmitted to M. We assume that the communication between C and M is authenticated and protected through a
secure chan-nel associated with key KCM established using the existing methods as described in Section II-B. M then
issues an au-thentication token of the form E(KMSi ; IDC; IDSi; v; KCSi) for each key material if the associated storage
device Si has not been revoked.7 This completes Phase I of the protocol. From this point onwards, any request from C to
access Si is considered part of Phase II of the protocol until v expires.

 When C submits an access request to M, the request con-tains all the identities of storage devices Si for 1 i n N
that C wishes to access. For each Si, M issues a layout i. C then forwards the respective layouts, authentication tokens
(from Phase I), and encrypted messages of the form E(ski

0; IDC ; t)to all n storage devices.
 Upon receiving an I/O request for a file object from C, each Siperforms the following:

1) check if the layout i is valid;
2) decrypt the authentication token and recover key KCSi ;
3) compute keys ski

z = F (KCSi ; IDC; IDSi; v; sid; z) for
z = 0; 1;

4) decrypt the encrypted message, check if IDC matches the identity of C and if t is within the current validity period
v;

5) if all previous checks pass, Si replies C with a key confirmation message using key ski
0.

 At the end of the protocol, ski
1 is set to be the session key for securing communication between C and Si. We note

that, as suggested in sid in our protocol is uniquely generated for each session at the application layer, for example
through the GSS-API.

pNFS-AKE-II: To address key escrow while achieving forward secrecy simultaneously, we incorporate a Diffie-
Hellman key agreement technique into Kerberos-like pNFS-AKE-I. However, note that we achieve only partial
forward secrecy (with respect to v), by trading efficiency over security. This implies that compromise of a long-term
key can expose session keys generated within the current v. However, past session keys in previous (expired)
timeperiods v′ (for v′< v) will not be affected.

 We now employ a Diffie-Hellman key agreement technique to both provide forward secrecy and prevent key
escrow. In this protocol, each Si is required to pre-distribute some key material to M at Phase I of the protocol.
Let gx2 G denote a Diffie-Hellman component, where G is an appropriate group generated by g, and x is a number
randomly chosen by entity X2 fC; Sg. Let (k; m) denote a secure MAC scheme that takes as input a secret key k and a
target message m, and output a MAC tag. Our partially forward secure protocol is specified in Figure 4.
At the beginning of each v, each Si that is governed by generates a Diffie-Hellman key component gsi . The key
component gsi is forwarded to and stored by M. Similarly, C generates its Diffie-Hellman key component gc and sends
it to .8 At the end of Phase I, C receives all the key components corresponding to all N storage devices that it may
access within time period v, and a set of authentication tokens of the form (KMSi ; IDC; IDSi; v; gc; gsi). We note that for
ease of exposition, we use the same key KMSi for encryption in step

(1) and MAC in step (2). In actual implementation, however, we assume that different keys are derived for encryption
and MAC, respectively, with KMSi as the master key. For example, the encryption key can be set to be F (KMSi ; “enc”),
while the MAC key can be set to be F (KMSi ; “mac”).

http://www.ijircce.com
http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Special Issue 1, March 2017

Copyright @ IJIRCCE www.ijircce.com 30

Steps (1) & (2) of Phase II are identical to those in the previous variants. In step (3), C submits its Diffie-Hellman

component gc in addition to other information required in step (3) of pNFS-AKE-I. Si must verify the authentication
token to ensure the integrity of gc. Here C and Si compute ski

z for z = 0; 1as follow:
skiz = F (gcsi ; IDC ; IDSi ; gc; gsi ; v; sid; z):

At the end of the protocol, C and Si share a session key ski
1. Note that since C distributes its chosen Diffie-Hellman

value gc during each protocol run (in Phase II), each Si needs to store only its own secret value si and is not required to
maintain a list of gc values for different clients. Upon expiry of v, they erase their secret values c and si, respectively,
from their internal states (or memory).Clearly, M does not learn anything about ski

z unless it colludes with the
associated C or Si, and thus achieving escrow-freeness.

pNFS-AKE III: pNFS-AKE-II achieves only partial forward secrecy (with respect to v). In the third variant of our
pNFS-AKE, therefore, we attempt to design a protocol that achieves full forward secrecy and escrow-freeness. A
straightforward and well-known technique to do this is through requiring both C and Si to generate and exchange fresh
Diffie-Hellman components for each access request at time t. However, this would drastically increase the
computationaloverhead at the client and the storage devices. Hence, we adopt a different approach here by combining
the Diffie-Hellman key exchange technique used in pNFS-AKE-II with a very efficient key update mechanism. The
latter allows session keys to be derived using only symmetric key operations based on a agreed Diffie-Hellman key.
Phase I of the protocol is similar to that of pNFS-AKE-II. In addition, M also distributes C’s chosen Diffie-Hellman
component gc to each Si. Hence, at the end of Phase I, both C and Siare able to agree on a Diffie-Hellman value
gcsi.Moreover, C and Si set F1(gcsi ; IDC; IDSi; v) to be their initial shared secret state KCS

0
i .9

During each access request at time t in Phase II, steps (1) & (2) of the protocol are identical to those in pNFS-AKE-

II. In step (3), however, C can directly establish a secure session with Si by computing ski
j,z as follows:

skj,z = F (Kj−1; ID
C

; ID
Si

; j; sid; z)
i 2 CSi

where j 1 is an increasing counter denoting the j-th session between C and Si with session key ski
j,1. Both C and Si then

Set
(Kj−1; j) Kj = F1

CSi CSi
and update their internal states. Note that here we use two different key derivation functions F1 and F2 to compute KCS

j
i

and ski
j,z, respectively. Our design can enforce independence among different session keys. Even if the adversary has

obtained a session key skij,1, the adversary cannot derive KCSj−1 or KCS
j
i . Therefore, the adversary cannot obtain ski

j+1,z
or any of the following session keys. It is worth noting that the shared state KCS

j
i should never be used as the session

key in real communications, and just like the long-term secret key, it should be kept at a safe place, since otherwise, the
adversary can use it to derive all the subsequent session keys within the validity period (i.e., KCS

j
i can be regarded as a

medium-term secret key material). This is similar to the situation that once the adversary compromises the long-term
secret key, it can learn all the subsequence sessions.

IV. PERFORMANCE EVALUATION

A. COMPUTATIONAL OVERHEAD:
We consider the computational overhead for w access requests over time period v for a metadata server M, a client C,

and storage devices Sifor i 2 [1; N]. We assume that alayout is of the form of a MAC, and the computational cost for
authenticated symmetric encryption E is similar to that for the non-authenticated version E. Table I gives a comparison
between Kerberos-based pNFS and our protocols in terms of the number of cryptographic operations required for
executing the protocols over time period v.

http://www.ijircce.com
http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Special Issue 1, March 2017

Copyright @ IJIRCCE www.ijircce.com 31

TABLE I
 Protocol M C all Si Total

 Kerberos-pNFS

– Symmetric key encryption /
decryption w(n + 5) w(2n + 3) 3wn w(6n + 8)

 – MAC generation / verification Wn 0 wn 2wn

 pNFS-AKE-I

– Symmetric key encryption /
decryption N + 1 2wn + 1 3wn 5wn + N + 2

 – MAC generation / verification Wn 0 wn 2wn
 – Key derivation 0 2wn 2wn 4wn

 pNFS-AKE-II

– Symmetric key encryption /
decryption N + 2 2wn + 2 2wn + 1 4wn + N + 5

 – MAC generation / verification wn + N 0 2wn 3wn + N
 – Key derivation 0 2wn 2wn 4wn
 – Diffie-Hellman exponentiation 0 N + 1 N + wn 2N + wn + 1

 pNFS-AKE-III

– Symmetric key encryption /
decryption 2N + 2 2wn + 2 2wn + 1 4wn + 2N + 5

 – MAC generation / verification Wn 0 wn 2wn
 – Key derivation 0 3wn + N 3wn + N 6wn + 2N
 – Diffie-Hellman exponentiation 0 N + 1 2N 3N + 1

 To give a more concrete view, Table II provides some estimation of the total computation times in seconds (s)
for each protocol by using the Crypto++ benchmarks obtained on an Intel Core 2 1.83 GHz processor under Windows
Vista in 32-bit mode. We choose AES/CBC (128-bit key) for encryption, AES/GCM (128-bit, 64K tables) for
authenticated encryption, HMAC(SHA-1) for MAC, and SHA-1 for key derivation. Also, Diffie-Hellman
exponentiations are based on DH 1024-bit key pair generation. Our estimation is based on a fixed message size of 1024
bytes for all cryptographic operations, and we consider the following case:

• N = 2n and w = 50(total access requests by C within v);
• C interacts with103storage devices concurrently for eachaccess request, i.e.n = 103;
• M has interacted with105clients over time period v; and
• each Si has interacted with 104 clients over time period v.

 Table II shows that our protocols reduce the workload of M in the existing Kerberos-based protocol by up to

approximately 54%. This improves the scalability of the metadata server considerably. The total estimated
computational cost for M for serving 105 clients is 8:02 104 s (22.3 hours) in Kerberos-based pNFS, compared with
3:68 104 s (10.2 hours) in pNFS-AKE-I and 3:86 104 s (10.6 hours) in pNFS-AKE-III. In general, one can see from
Table I that the workload of M is always reduced by roughly half for any values of (w; n; N). The scalability of our
protocols from the server’s perspective in terms of supporting a large number of clients is further illustrated in the left
graph of Figure 6 when we consider each client requesting access to an average of n = 103storage devices.

http://www.ijircce.com
http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Special Issue 1, March 2017

Copyright @ IJIRCCE www.ijircce.com 32

TABLE II

Protocol FFS EF M C Si
Kerberos-
pNFS

 4
0.90 17.00 8:02 104

pNFS-AKE-I

✓

3:68 104 1.50 23.00
pNFS-AKE-
II

✓

3:82 104 2.40 256.00
pNFS-AKE-
III ✓ 3:86 10 2.71 39.60

 Moreover, the additional overhead for C (and all Si) for achieving full forward secrecy and escrow-freeness using our
techniques are minimal. The right graph of Figure 6 shows that our pNFS-AKE-III protocol has roughly similar
computational overhead in comparison with Kerberos-pNFS when the num-ber of accessed storage devices is small;
and the increased computational overhead for accessing 103 storage devices in parallel is only roughly 1/500 of a
second compared to that of Kerberos-pNFS—a very reasonable trade-off between efficiency and security. The small
increase in overhead is partly due to the fact that some of our cryptographic cost is amortized over a time period v.
On the other hand, we note that the significantly higher computational overhead incurred by Si in pNFS-AKE-II is
largely due to the cost of Diffie-Hellman exponentiations. This is a space-computation trade-off as explained in Section
V-B (see Section VII-C for further discussion on key storage). Nevertheless, 256 s is an average computation time for
103 storage devices over time period v, and thus the average computation time for a storage device is still reasonably
small, i.e. less than 1/3 of a second over time period v. Moreover, wecan reduce the computational cost for Si to roughly
similar to that of pNFS-AKE-III if C pre-distributes its gc value to all relevant Si so that they can pre-compute the gcsi
value for each time period v.

B. COMMUNICATION OVERHEAD:

 Assuming fresh session keys are used to secure communica-tions between the client and multiple storage
devices, clearly all our protocols have reduced bandwidth requirements. This is because during each access request, the
client does not need to fetch the required authentication token set from M. Hence, the reduction in bandwidth
consumption is approximately the size of n authentication tokens.

M il li s e c o n d s

D
S

http://www.ijircce.com
http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Special Issue 1, March 2017

Copyright @ IJIRCCE www.ijircce.com 33

V. CONCLUSIONS

 We proposed three authenticated key exchange protocols for parallel network file system (PNFS). Our
protocols offer three appealing advantages over the existing Kerberos-based PNFS protocol. First, the metadata server
executing our protocols has much lower workload than that of the Kerberos-based approach. Second, two our protocols
provide forward secrecy: one is partially forward secure (with respect to multiple sessions within a time period), while
the other is fully forward secure (with respect to a session). Third, we have designed a protocol which not only provides
forward secrecy, but is also escrow-free.

REFERENCES

[1] M. Abd-El-Malek, W.V. Courtright II, C. Cranor, G.R. Ganger, J. Hen-dricks, A.J. Klosterman, M.P. Mesnier, M. Prasad, B. Salmon, R.R.

Sam-basivan, S. Sinnamohideen, J.D. Strunk, E. Thereska, M. Wachs, and J.J. Wylie. Ursa Minor: Versatile cluster-based storage. In
Proceedingsof the 4th USENIX Conference on File and Storage Technologies (FAST),pages 59–72. USENIX Association, Dec 2005.

[2] C. Adams. The simple public-key GSS-API mechanism (SPKM). TheInternet Engineering Task Force (IETF), RFC 2025, Oct 1996.
[3] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J.R. Douceur, J. Howell, J.R. Lorch, M. Theimer, and R. Wattenhofer. FARSITE:

Federated, available, and reliable storage for an incompletely trusted environment. In Proceedings of the 5th Symposium on OperatingSystem
Design and Implementation (OSDI). USENIX Association, Dec2002.

[4] M.K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick, E. Oertli, D.G. Andersen, M. Burrows, T. Mann, and C.A. Thekkath. Block-level security
for network-attached disks. In Proceedings of the 2ndInternational Conference on File and Storage Technologies (FAST).USENIX Association,
Mar 2003.

[5] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view
of cloud computing. Communications of the ACM, 53(4):50–58. ACM Press, Apr 2010.

[6] Amazon simple storage service (Amazon S3). http://aws.amazon.com/ s3/.
[7] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key ex-change secure against dictionary attacks. In Advances in Cryptology

– Proceedings of EUROCRYPT, pages 139–155. Springer LNCS 1807,May 2000.
[8] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with short ciphertexts and private keys. In Advances inCryptology

– Proceedings of CRYPTO, pages 258–275. Springer LNCS3621, Aug 2005.
[9] B. Callaghan, B. Pawlowski, and P. Staubach. NFS version 3 protocol specification. The Internet Engineering Task Force (IETF), RFC 1813,

Jun 1995.
[10] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building secure channels. In Advances in Cryptology –

Proceedings of EUROCRYPT, pages 453–474. Springer LNCS 2045,May 2001.
[11] CloudStore. http://gcloud.civilservice.gov.uk/cloudstore/.
[12] Crypto++ 5.6.0 Benchmarks. http://www.cryptopp.com/benchmarks. html.
[13] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In Proceedings of the 6th Symposium on OperatingSystem

Design and Implementation (OSDI), pages 137–150. USENIXAssociation, Dec 2004.
[14] M. Eisler. LIPKEY - A Low Infrastructure Public Key mechanism using SPKM. The Internet Engineering Task Force (IETF), RFC 2847, Jun

2000.
[15] M. Eisler. XDR: External data representation standard. The InternetEngineering Task Force (IETF), STD 67, RFC 4506, May 2006.
[16] M. Eisler. RPCSEC GSS version 2. The Internet Engineering TaskForce (IETF), RFC 5403, Feb 2009.
[17] M. Eisler, A. Chiu, and L. Ling. RPCSEC GSS protocol specification.

The Internet Engineering Task Force (IETF), RFC 2203, Sep 1997.
[18] S. Emery. Kerberos version 5 Generic Security Service Application Program Interface (GSS-API) channel binding hash agility. The

InternetEngineering Task Force (IETF), RFC 6542, Mar 2012.
[19] M. Factor, D. Nagle, D. Naor, E. Riedel, and J. Satran. The OSD security protocol. In Proceedings of the 3rd IEEE International Securityin

Storage Workshop (SISW), pages 29–39. IEEE Computer Society, Dec2005.
[20] Financial Services Grid Initiative. http://www.fsgrid.com/.
[21] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. In Proceedings of the 19th ACM Symposium on Operating SystemsPrinciples

(SOSP), pages 29–43. ACM Press, Oct 2003.
[22] G.A. Gibson, D.F. Nagle, K. Amiri, J. Butler, F.W. Chang, H. Go-bioff, C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A cost-effective,

high-bandwidth storage architecture. ACM SIGPLAN Notices, 33(11):92–103. ACM Press, Nov 1998.
[23] Hadoop Wiki. http://wiki.apache.org/hadoop/PoweredBy.
[24] J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols, M. Satya-narayanan, R.N. Sidebotham, and M.J. West. Scale and performance in a

distributed file system. ACM Transactions on Computer Systems(TOCS), 6(1):51–81. ACM Press, Feb 1988.
[25] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J. Malo,

J. Marti, and E. Cesario. The XtreemFS architecture – a case for object-based file systems in grids. Concurrency and Computation: Practice
andExperience (CCPE), 20(17):2049–2060. Wiley, Dec 2008.

[26] Hadoop distributed file system. http://hadoop.apache.org/hdfs/. [27] J. Kubiatowicz, D. Bindel, Y. Chen, S.E. Czerwinski, P.R. Eaton,
C. Geels, R. Gummadi, S.C. Rhea, H. Weatherspoon, W. Weimer,Wells, and B.Y. Zhao. OceanStore: An architecture for global-scale
persistent storage. In Proceedings of the 9th International Conferenceon Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 190–201. ACM Press, Nov 2000. [28] S. Langella, S. Hastings, S. Oster, T. Pan, A. Sharma, J. Permar,
D. Ervin, B.B. Cambazoglu, T.M. Kurc¸, and J.H. Saltz. Model formu-lation: Sharing data and analytical resources securely in a biomedical
research grid environment. Journal of the American Medical InformaticsAssociation (JAMIA), 15(3):363–373. BMJ, May 2008.

http://www.ijircce.com
http://www.ijircce.com
http://aws.amazon.com/
http://gcloud.civilservice.gov.uk/cloudstore/.
http://www.cryptopp.com/benchmarks.
http://www.fsgrid.com/.
http://wiki.apache.org/hadoop/PoweredBy.
http://hadoop.apache.org/hdfs/.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Special Issue 1, March 2017

Copyright @ IJIRCCE www.ijircce.com 34

[29] A.W. Leung and E.L. Miller. Scalable security for large, high perfor-mance storage systems. In Proceedings of the ACM Workshop on
StorageSecurity and Survivability (StorageSS), pages 29–40. ACM Press, Oct2006.

[30] A.W. Leung, E.L. Miller, and S. Jones. Scalable security for petascale parallel file systems. In Proceedings of the ACM/IEEE Conference
onHigh Performance Networking and Computing (SC), page 16. ACMPress, Nov 2007.

[31] H.W. Lim. Key management for large-scale distributed storage systems. In Proceedings of the 6th European Public Key Infrastructure
Workshop(EuroPKI), pages 99–113. Springer LNCS 6391, Sep 2010.

[32] J. Linn. The Kerberos version 5 GSS-API mechanism. The InternetEngineering Task Force (IETF), RFC 1964, Jun 1996.
[33] J. Linn. Generic security service application program interface version 2, update 1. The Internet Engineering Task Force (IETF), RFC 2743, Jan

2000.
[34] Libris Financial. http://www.librisfinancial.com/stratolibris.html.
[35] Lustre. http://www.lustre.org.
[36] D. Mazieres,` M. Kaminsky, M.F. Kaashoek, and E. Witchel. Separating key management from file system security.

http://www.ijircce.com
http://www.ijircce.com
http://www.librisfinancial.com/stratolibris.html.
http://www.lustre.org.

